A general numerical scheme for the optimal control of fractional Birkhoffian systems
نویسندگان
چکیده
This paper gives a general numerical scheme for the optimal control problem of fractional Birkhoffian systems. The forced Birkhoff equations within Riemann–Liouville derivatives are derived from Pfaff–Birkhoff–d’Alembert principle which includes as an external force term. Following strategy variational integrators, is directly discretized to develop equivalent discrete that served equality constraints optimization problem. Together with initial and final state on configuration space, original converted into nonlinear subjected system algebraic constraints, can be solved by existing algorithms. An illustrative example given show efficiency simplicity proposed method.
منابع مشابه
A Central Difference Numerical Scheme for Fractional Optimal Control Problems
This paper presents a modified numerical scheme for a class of Fractional Optimal Control Problems (FOCPs) formulated in Agrawal (2004) where a Fractional Derivative (FD) is defined in the Riemann-Liouville sense. In this scheme, the entire time domain is divided into several subdomains, and a fractional derivative (FDs) at a time node point is approximated using a modified Grünwald-Letnikov ap...
متن کاملAn Efficient Numerical Scheme for Solving Fractional Optimal Control Problems
Abstract: This paper presents an accurate numerical method for solving a class of fractional optimal control problems (FOCPs). The fractional derivative in these problems is in the Caputo sense. In this technique, we approximate FOCPs and end up with a finite dimensional problem. The method is based on the combination of the useful properties of Chebyshev polynomials approximation and finite di...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملA Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
متن کاملNumerical method for solving optimal control problem of the linear differential systems with inequality constraints
In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2022
ISSN: ['1573-269X', '0924-090X']
DOI: https://doi.org/10.1007/s11071-022-07720-z